生物百科  > 所属分类  >  物理学   
[66] 评论[0] 编辑

核燃料

概述
核燃料核燃料
核燃料(nuclear fuel),可在核反应堆中通过核裂变或核聚变产生实用核能的材料。重核的裂变和轻核的聚变是获得实用铀棒核能的两种主要方式。铀235、铀233和钚239是能发生核裂变的核燃料,又称裂变核燃料。其中铀235存在于自然界,而233、钚239则是钍232和铀238吸收中子后分别形成的人工核素。从广义上说,钍232和铀238也是核燃料。氘和氚是能发生核聚变的核燃料,又称聚变核燃料。氘存在于自然界,氚是锂6吸收中子后形成的人工核素。核燃料在核反应堆中“燃烧”时产生的能量远大于化石燃料,1千克铀235完全裂变时产生的能量约相当于2500吨煤。
  
已经大量建造的核反应堆使用的是裂变核燃料铀235 和钚239,很少使用铀233。至今由于还未有建成使用聚变核燃料的反应堆,因此通常说到核燃料时指的是裂变核燃料。由于核反应堆运行特性和安全上的要求,核燃料在核反应堆中“燃烧”不允许像化石燃料一样一次烧尽。为了回收和重新利用就必须进行后处理。核燃料后处理是一个复杂的化学分离纯化过程,曾经研究过各种水法过程和干法过程。目前各国普遍使用的是以磷酸三丁酯为萃取剂的萃取法过程,即所谓的普雷克斯流程。核燃料后处理过程与一般的水法冶金过程之最大差别是它具有很强的放射性和存在发生核临界的危险。因此,必须将设备置于有厚的重混凝土防护墙的设备室中并实行远距离操作以及采取防止核临界的措施。所产生的各种放射性废物要严加管理和妥善处置以确保环境安全。实行核燃料后处理,可更充分、合理地使用已有的铀资源
类型
核燃料核燃料
包含易裂变核素、在核反应堆内可以实现自持核裂变链式反应的材料。核燃料在反应堆内使用时,应满足以下的要求:①与包壳材料相容,与冷却剂无强烈的化学作用;②具有较高的熔点和热导率;③辐照稳定性好;④制造容易,再处理简单。根据不同的堆型,可以选用不同类型的核燃料:金属(包括合金)燃料,陶瓷燃料,弥散体燃料和流体(液态)燃料等(见表)。

金属燃料  是目前普遍使用的核燃料。天然铀中只含0.7%的U,其余为U。天然铀的这个浓度正好能使核反应堆实现自持核裂变链式反应,因而成为最早的核燃料,目前仍在使用。但核电站(特别是核潜艇)用的反应堆要求结构紧凑和高的功率密度,一般要用U含量大于0.7%的浓缩铀。这可以通过气体扩散法或离心法来获得。金属铀在堆内使用的主要缺点为:有同质异晶转变;熔点低;存在尺寸不稳定性;最常见的是核裂变产物使其体积膨胀(称为肿胀);加工时形成的织构使铀棒在辐照时沿轴向伸长(称为辐照生长),虽然不伴随体积变化,但伸长量有时可达原长的4倍。此外,辐照还使金属铀的蠕变速度增加(50~ 100倍)。这些问题通过铀的合金化虽有所改善,但远不如采用UO2陶瓷燃料为佳。

(Pu)是人工易裂变材料,临界质量比铀小,在有水的情况下,650克的钚即可发生临界事故。钚的熔点很低(640℃),一般都以氧化物与UO2混合使用。钚与U组合可以实现快中子增殖,因而使钚成为着重研究的核燃料。

吸收中子后可以转换为易裂变的U,它在地壳中的储量很丰富,所能提供的能量大约相当于铀、煤和石油全部储量的总和。钍的熔点较高,直至1400℃才发生相变,且相变前后均为各向同性结构,所以辐照稳定性较好,这是它优于铀、钚之处。钍在使用中的主要限制为辐照下蠕变强度很低。一般以氧化物或碳化物的形式使用。在热中子反应堆中利用U-Th循环可得到接近于1的转换比,从而实现“近似增殖”。但这种循环比较复杂,后处理也比较困难,因此尚未获得广泛应用。

核燃料处理厂核燃料处理厂
陶瓷燃料  包括铀、钚等的氧化物、碳化物和氮化物,其中UO2是最常用的陶瓷燃料。UO2的熔点很高(2865℃),高温稳定性好。辐照时UO2燃料芯块内可保留大量裂变气体,所以燃耗(指燃耗份额,即消耗的易裂变核素的量占初始装载量的百分比值)达10%也无明显的尺寸变化。它与包壳材料锆或不锈钢之间的相容性很好,与水也几乎没有化学反应,因此普遍用于轻水堆中。但是UO2的热导率较低,核燃料的密度低,限制了反应堆参数进一步提高。在这方面,碳化铀(UC)则具有明显的优越性。UC的热导率比UO2高几倍,单位体积内的含铀量也高得多。它的主要缺点是会与水发生反应,一般用于高温气冷堆。

弥散体燃料  这种材料是将核燃料弥散地分布在非裂变材料中。在实际应用中,广泛采用由陶瓷燃料颗粒和金属基体组成的弥散体系。这样可以把陶瓷的高熔点和辐照稳定性与金属的较好的强度、塑性和热导率结合起来。细小的陶瓷燃料颗粒减轻了温差造成的热应力,连续的金属基体又大大减少了裂变产物的外泄。由裂变碎片所引起的辐照损伤基本上集中在燃料颗粒内,而基体主要是处在中子的作用下,所受损伤相对较轻,从而可达到很深的燃耗。这种燃料在研究堆中获得广泛应用。除陶瓷燃料颗粒外,由铀、铝的金属间化合物和铝合金(或铝粉)所组成的体系,效果也较好。在弥散体燃料中由于基体对中子的吸收和对燃料相的稀释,必须使用浓缩铀。

包覆颗粒燃料也是一种弥散体系。在高温气冷堆中,采用铀、钍的氧化物或碳化物作为核燃料,并把它弥散在石墨中。由于石墨基体不够致密,因而要在燃料颗粒外面包上耐高温的、坚固而气密性好的多层外壳,以防止裂变产物的外泄和燃料颗粒的膨胀。外壳是由不同密度的热解碳和碳化硅(SiC)组成的,其总厚度应大于反冲原子的自由程,一般在100~300微米之间。整个燃料颗粒的直径为1毫米。使用包覆颗粒燃料不仅可达到很深的燃耗,而且大大提高了反应堆的工作温度,是一种很有前途的核燃料类型。

以上几种类型的核燃料都用于非均匀堆。根据设计要求,可制成带有包壳的、不同形状的燃料元件(见图)。
核燃料核燃料


流体燃料  在均匀堆中,核燃料悬浮或溶解于水、液态金属或熔盐中,从而成为流体燃料(液态燃料)。流体燃料从根本上消除了因辐照造成的尺寸不稳定性,也不会因温度梯度而产生热应力,可以达到很深的燃耗。同时,核燃料的制备和后处理也都大大简化,并且还提供了连续加料和处理的可能性。流体燃料与冷却剂或慢化剂直接接触,所以对放射性安全提出较严的要求,且腐蚀和质量迁移也往往是一个严重问题。目前这种核燃料尚处于实验阶段(见锕系金属)。
相关信息
伊外长要求修改核燃料交换方案

伊朗外交部长马努切赫尔·穆塔基2010年2月5日说,伊朗想修改国际原子能机构提出的核燃料交换方案,他对最终达成协议表示乐观。穆塔基当天接受德国《南德意志报》采访时作出上述表态。报纸定于6日刊登出这篇采访文章。

国际原子能机构2009年10月提议,伊朗把国内大部分低浓度浓缩铀一次性运往俄罗斯提纯,然后再由法国把它们加工成伊朗研究用核反应堆所需的核燃料棒。“我们认为,这一过程将让我们进入一种新的信任氛围中,”穆塔基说,“我们已经由我们的总统、以最高级别表明我们同意,那是重要的一点。”他同时警告,伊朗不会接受国际原子能机构提议的时间表。按德新社的说法,国际原子能机构方案中,伊朗运出浓缩铀后,等待多达1年时间才能收到核燃料。穆塔基说,最近几个月外交氛围已改善,表明或许能达成一项最终协议。“最重要的一点是存在核燃料交换的政治意愿……双方采取举措建立信任很重要,我们已感觉到那正在发生。”[1]

附件列表


66

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 放射性    下一篇 能量守恒定律

标签

同义词

暂无同义词