生物酶
人类生存环境已愈来愈受到全球的关注。生物技术的发展使印染工业减少和取消有害化学品, 从而有可能降低或消除污染。同时纤维的生物处理改善了织物的性能, 为产品开发提供了又一条途径。生物酶是一种专一的、强力的催化剂。生物酶的催化作用速度很快, 并使化学反应的活化自由能明显降低。
简要概述编辑本段
生物酶是一种无毒、对环境友好的生物催化剂,其化学本质为蛋白质。酶的生产和应用,在国内外已具有80多年历史,进入20世纪80年代,生物工程作为一门新兴高新术在中国得到了迅速发展,酶的制造和应用领域逐渐扩大,酶在纺织工业中的应用也日臻成熟,由过去主要用于棉织物的退浆和蚕丝的脱胶,至现在在纺织染整的各领域的广泛应用,体现了生物酶在染整工业中的优越性。现在酶处理工艺已被公认为是一种符合环保要求的绿色生产工艺,它不仅使纺织品的服用性能得到改善和提高,又因无毒无害,用量少,可生物降解废水,无污染而有利于生态环保的保护。本文从酶的特性及作用机理,阐述了生物酶在常见纤维品种上的应用,展望了生物酶在染整工业中的应用前景。
结构和特性编辑本段
生物酶是具有催化功能的蛋白质。象其他蛋白质一样,酶分子由氨基酸长链组成。其中一部分链成螺旋状,一部分成折叠的薄片结构,而这两部分由不折叠的氨基酸链连接起来,而使整个酶分子成为特定的三维结构。生物酶是从生物体中产生的,它具有特殊的催化功能,其特性如下:高效性:用酶作催化剂,酶的催化效率是一般无机催化剂的10^3~10^6倍。专一性:一种酶只能催化一类物质的化学反应,即酶是仅能促进特定化合物、特定化学键、特定化学变化的催化剂。低反应条件:酶催化反应不象一般催化剂需要高温、高压、强酸、强碱等剧烈条件,而可在较温和的常温、常压下进行。易变性失活:在受到紫外线、热、射线、表面活性剂、金属盐、强酸、强碱及其它化学试剂如氧化剂、还原剂等因素影响时,酶蛋白的二级、三级结构有所改变。所以在大生产时,如有条件酶还可以回收利用。可降低生化反应的反应活化能:酶作为一种催化剂,能提高化学反应的速率,主要原因是降低了反应的活化能,使反应更易进行。而且酶在反应前后理论上是不被消耗的,所以还可回收利用。
作用机理编辑本段
酶蛋白与其它蛋白质的不同之处在于酶都具有活性中心。酶可分为四级结构:一级结构是氨基酸的排列顺序;二级结构是肽链的平面空间构象;三级结构是肽链的立体空间构象;四级结构是肽链以非共价键相互结合成为完整的蛋白质分子。真正起决定作用的是酶的一级结构,它的改变将改变酶的性质(失活或变性)。酶的作用机理比较被认同的是Koshland的“诱导契合”学说,其主要内容是:当底物结合到酶的活性部位时,酶的构象有一个改变。催化基团的正确定向对于催化作用是必要的。底物诱导酶蛋白构象的变化,导致催化基团的正确定位与底物结合到酶的活性部位上去。
主要应用编辑本段
生物酶技术应用于染整加工主要有两个方面:(1)天然纤维织物的前处理加工,用生物酶去除纤维或织物上的杂质,为后续染整加工创造条件。(2)织物的后整理加工,用生物酶去除纤维表面的绒毛,或使纤维减量,以改善织物的外观、手感和风格。目前应用的生物酶主要有以下几种。
H2O2 分解酶
这是一种稳定的过氧化氢分解酶, 能将过氧化氢分解成水和氧气,而对纤维和染料没有影响,因而漂白后染色前, 通过H2O2 分解酶去除漂白织物上和染缸中残留的过氧化氢,以避免纤维的进一步氧化和染色时染料的氧化。同时能缩短加工时间,减少水洗用水,降低废水量。尤其对纱线、筒子纱和针织物更为适用。同样,过氧化氢分解酶随pH 值和温度的改变,其活力随之变化,在pH7 左右和30~40 ℃活性最大。过氧化氢浓度增大, 会加快分解反应速度,但必须注意当浓度大于一定量时,酶的作用将减弱, 这样过多的残留H2O2 对纤维和染料是不利的。所以不能因为有了H2O2 分解酶,就能任意地加大H2O2 的用量。使用时,通常要注意H2O2 分解酶对常用表面活性剂和H2O2 稳定剂的相容性, 实际生产应用pH为6~8 ,温度20~55 ℃,酶用量5~10KCLU/ 升,时间10~20min。此技术已慢慢地被国内所认识和接受,它对提高活性染料色泽鲜艳度很有利。要说明的是用酶可促进漂白的进行, 羊毛在含有蛋白酶Bactosol ST的过氧化氢漂液中漂白, 可显著提高羊毛的白度和亲水性。这是由于酶促进羊毛纤维初始受到快速的浸蚀,致使羊毛漂白较易进行。从此原理出发,将蛋白酶对羊毛先预处理, 使纤维表面裸露,再进行漂白,显然效果更好,且纤维损伤也易控制。
靛蓝漂白酶Denilite
这是一种作用于靛蓝染料发色体系分解靛蓝染料,破坏其发色的生物酶, 用于靛蓝染色织物,能去除靛蓝色泽。它不同于纤维素酶牛仔布的水洗泛旧及传统的牛仔布石磨,其主要特点是不损伤纤维,保持织物良好的强力,并能较好地控制靛蓝染料的分解, 从而控制靛蓝漂白程度,使靛蓝织物漂白更容易,赋予服装独特的整理效果。同时,也减少了处理残液的色度, 降低废水量。靛蓝漂白酶在不同温度和pH 值下活性不同,以55~65 ℃和pH5.5~6.5 为最大, 在以上范围之外, 活性明显下降。其生产中应用的条件为:用量0.5 %~2 % (o. w. f) ,温度55~65 ℃,pH 值5.5~6.5 , 时间15~30min。
果胶酶
果胶酶主要是由果胶裂解酶、聚半乳糖醛酸酶、果胶酸盐裂解酶和果胶酯酶组成。果胶物质是高度酯化的聚半乳糖醛酸。果胶酶作用于果胶物质时,果胶裂解酶、聚半乳糖醛酸酶、果胶酸盐裂解酶直接作用于果胶聚合物分子链内部的配糖键上,而果胶酯酶则使聚半糖醛酸酯水解,为聚半乳糖醛酸酶和果胶酸盐裂解酶创造更多的位置。
脂肪酶
脂肪酶能将脂肪水解成甘油和脂肪酸,脂肪酸进一步进行B一氧化,每次脱下一个C2物,生成乙酰COA(N—环己基辛基胺),进入TCA(三羧酸)环彻底氧化或进入乙醛酸环合成糖类。
蛋白酶
由微生物分泌的蛋白酶因菌种不同而异,例如枯草杆菌分泌明胶酶和酪蛋白酶,可以水解明胶和酪蛋白;费氏链酶菌分泌角蛋白酶,可以水解动物的毛、角、蹄的角蛋白。蛋白酶将蛋白质分解成肽,再经肽酶水解成氨基酸。
纤维素酶
纤维素酶是一个多组分酶体系,纺织工业中应用的纤维素酶大多数是由木酶属真菌制造的。纤维素酶中的纤维素二糖水解酶又称为外切纤维素酶,由CHB I和CHB II两种酶组成,而内切葡聚糖酶,又称为内切纤维素酶,至少由5种纤维素酶(EG I、EG II、EG HI、EG IV、EG V)组成。此外,还有13一葡萄糖醛酶。这些纤维素酶在纤维素的水解中具有协同作用。
生物酶工程编辑本段
生物酶工程是2003年发展起来的新的学科领域,其基础是结构生物学和生物信息学。是利用蛋白质超分子结构知识,采用基因工程和蛋白质工程手段,对天然酶实施定向改造和体外分子操作,在开发新型和高质量分析酶试剂等方面意义重大。生物酶工程是酶学原理和现代分子生物学技术相结合的产物,主要任务是:①利用微生物、动植物细胞作为生物反应器大量生产酶。目前已成功地生产出100多种酶。②通过基因工程技术,使酶基因发生定位突变,产生遗传性修饰酶(突变酶)。③合成自然界不存在的新酶。虽然生物酶工程技术的发展尚处在幼年时代,但它将开创从分子水平根据遗传设计蓝图创造出超自然生物机器的新时代。
相关词条编辑本段
参考资料编辑本段
附件列表
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。