二分法
简介
一般地,对于函数f(x),如果存在实数c,当x=c是f(c)=0,那么把x=c叫做函数f(x)的零点。 解方程即要求f(x)的所有零点。
先找到a、b,使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f【(a+b)/2】,
现在假设f(a)<0,f(b)>0,a<b
如果f【(a+b)/2】=0,该点就是零点,
如果f【(a+b)/2】<0,则在区间((a+b)/2,b)内有零点,按上述方法在求该区间中点的函数值,这样就可以不断接近零点
如果f【(a+b)/2】>0,同上
通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。
由于计算过程的具体运算复杂,但每一步的方式相同,所以可通过编写程序来运算。
例:(C语言)
方程式为:f(x) = 0,示例中f(x) = 1+x-x^3
使用示例:
input a b e: 1 2 1e-5
solution: 1.32472
源码如下:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>
double f(double x)
{
return 1+x-x*x*x;
}
int main()
{
double a = 0, b = 0, e = 1e-5;
printf("input a b e: ");
scanf("%lf%lf%lf", &a, &b, &e);
e = fabs(e);
if (fabs(f(a)) <= e)
{
printf("solution: %lgn", a);
}
else if (fabs(f(b)) <= e)
{
printf("solution: %lgn", b);
}
else if (f(a)*f(b) > 0)
{
printf("f(%lg)*f(%lg) > 0 ! need <= 0 !n", a, b);
}
else
{
while (fabs(b-a) > e)
{
double c = (a+b)/2.0;
if (f(a)* f ( c ) < 0)
b = c;
else
a = c;
}
printf("solution: %lgn", (a+b)/2.0);
}
return 0;
}
附件列表
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。