生物百科  > 所属分类  >  心理学   
[81] 评论[0] 编辑

假设检验

假设检验

 假设检验亦称“显著性检验(Test of statistical significance)”,是用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

  生物现象的个体差异是客观存在,以致抽样误差不可避免,所以我们不能仅凭个别样本的值来下结论。当遇到两个或几个样本均数(或率)、样本均数(率)与已知总体均数(率)有大有小时,应当考虑到造成这种差别的原因有两种可能:一是这两个或几个样本均数(或率)来自同一总体,其差别仅仅由于抽样误差即偶然性所造成;二是这两个或几个样本均数(或率)来自不同的总体,即其差别不仅由抽样误差造成,而主要是由实验因素不同所引起的。假设检验的目的就在于排除抽样误差的影响,区分差别在统计上是否成立,并了解事件发生的概率。

  在质量管理工作中经常遇到两者进行比较的情况,如采购原材料的验证,我们抽样所得到的数据在目标值两边波动,有时波动很大,这时你如何进行判定这些原料是否达到了我们规定的要求呢?再例如,你先后做了两批实验,得到两组数据,你想知道在这两试实验中合格率有无显著变化,那怎么做呢?这时你可以使用假设检验这种统计方法,来比较你的数据,它可以告诉你两者是否相等,同时也可以告诉你,在你做出这样的结论时,你所承担的风险。假设检验的思想是,先假设两者相等,即:?=?0,然后用统计的方法来计算验证你的假设是否正确。

  用的假设检验有Z检验、T检验、配对检验、比例检验、秩和检验、卡方检验等。

假设检验的基本思想


  假设检验的基本思想是小概率反证法思想。小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设不成立。

假设检验的基本步骤


  1、提出检验假设(又称无效假设,符号是H0))和备择假设(符号是H1)。

H0:样本与总体或样本与样本间的差异是由抽样误差引起的;
H1:样本与总体或样本与样本间存在本质差异;
  预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。

  2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。

  3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。

假设检验应注意的问题


  1、做假设检验之前,应注意资料本身是否有可比性。

  2、当差别有统计学意义时应注意这样的差别在实际应用中有无意义。

  3、根据资料类型和特点选用正确的假设检验方法。

  4、根据专业及经验确定是选用单侧检验还是双侧检验。

  5、当检验结果为拒绝无效假设时,应注意有发生I类错误的可能性,即错误地拒绝了本身成立的H0,发生这种错误的可能性预先是知道的,即检验水准那么大;当检验结果为不拒绝无效假设时,应注意有发生II类错误的可能性,即仍有可能错误地接受了本身就不成立的H0,发生这种错误的可能性预先是不知道的,但与样本含量和I类错误的大小有关系。

  6、判断结论时不能绝对化,应注意无论接受或拒绝检验假设,都有判断错误的可能性。

  7、报告结论时是应注意说明所用的统计量,检验的单双侧及P值的确切范围。

正文
  又称统计假设检验,是一种基本的统计推断形式,也是数理统计学的一个重要的分支。“假设”是指关于总体分布的一项命题。例如,一群人的身高服从正态分布N(μ,σ2),则命题“均值μ≤1.70(米)”是一个假设。又如,有一批产品,其废品率为p,则“p≤0.03”这个命题也是一个假设。假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。
  设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合h0,称为原假设(常简称假设)。使命题A不成立的所有总体分布构成另一个集合h1,称为备择假设。如果h0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设(见非参数统计)。如果h0(或h1)只包含一个分布,则称原假设(或备择假设)为简单假设,否则为复合假设。对一个假设h0进行检验,就是要制定一个规则,使得有了样本以后,根据这规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。这样,所有可能的样本所组成的空间(称样本空间)被划分为两部分HA和HR(HA的补集),当样本x∈HA时,接受假设h0;当x∈HR时,拒绝h0。集合HR常称为检验的拒绝域,HA称为接受域。因此选定一个检验法,也就是选定一个拒绝域,故常把检验法本身与拒绝域HR等同起来。
  显著性检验  有时,根据一定的理论或经验,认为某一假设h0成立,例如,通常有理由认为特定的一群人的身高服从正态分布。当收集了一定数据后,可以评价实际数据与理论假设h0之间的偏离,如果偏离达到了“显著”的程度就拒绝h0,这样的检验方法称为显著性检验。怎样去规定什么时候偏离达到显著的程度?通常是指定一个很小的正数α(如0.05,0.01),使当h0正确时,它被拒绝的概率不超过α,称α为显著性水平。这种假设检验问题的特点是不考虑备择假设,就上例而言,问题可以说成是考虑实验数据与理论之间拟合的程度如何,故此时又称为拟合优度检验。拟合优度检验是一类重要的显著性检验。
  参考书目
 E.L.Lehmann,Testing Statistical Hypothesis,John Wiley & Sons, New York, 1959.

附件列表


81

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 假设    下一篇 假设群体

标签

同义词

暂无同义词